Academic staff
2616
total views of outputs5280
total downloads of outputs1
views of outputs this month0
downloads of outputs this month
I am the Dean of Engineering at LSBU and was previously the Head of the School of Engineering at Portsmouth University. Prior to these appoints, I was a principle investigator in materials engineering at Queen Mary University of London and developed a range of techniques in nano mechanics at Weizmann Institute of Science in Israel.
I have published extensively and secured over £5M in research funding from government grants as well as direct support from industry.
My interests are in materials engineering and particularly the mechanical behaviour of composite-like structures. Many of my research activities have focussed on constituents with reduced dimensions, such as polymeric nanofibres, carbon nanotubes and graphene, and the building blocks used to assemble biological structures. Such research has often required the development of novel mechanical and imaging techniques. These interests have a broad range of applications from tissue engineering and healthcare to lightweight materials used in transport. Recent work examines engineering approaches to reproduce structures found in biological, particularly the diversity of teeth ranging from those found in humans to limpets, which I identified as the strongest biological material known. The engineering approaches I use are broad and cover advanced additive manufacturing (3D printing) as well as bioengineering approaches using synthetic biology.
Postgraduate Research Supervision
Awarded in the last 5 years
Gannian Zhang | PhD | |
Alexander Cresswell-Boyes | PhD | |
Marco Curto | PhD | |
Neelam Siyab | ||
Russell J. Bailey | PhD | |
Marta Fernandez | PhD |
Imperial College London
University of Manchester Institute of Science and Technology (UMIST)
Proposal | Project | Role | Funder | Status | Status last updated |
---|---|---|---|---|---|
Parallel Manufacturing of Bio-Based Photoprotective Products with Ionic Liquids | Parallel Manufacturing of Bio-Based Photoprotective Products with Ionic Liquids | Principal Investigator | Leverhulme Trust | OPEN Submitted | Feb 2023 |
Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation
Peña Fernández, M, Cipiccia, S, Dall'Ara, E, Bodey, AJ, Parwani, R, Pani, M, Blunn, GW, Barber, AH and Tozzi, G (2018). Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation. Journal of the Mechanical Behavior of Biomedical Materials. 88, pp. 109-119. https://doi.org/10.1016/j.jmbbm.2018.08.012
Failure mechanisms in denture adhesives
An, Y, Li, D, Roohpour, N, Gautrot, JE and Barber, AH (2016). Failure mechanisms in denture adhesives. Dental Materials. 32 (5), pp. 615-623. https://doi.org/10.1016/j.dental.2016.01.007
Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach
Anssari-Benam, A, Barber, AH and Bucchi, A (2016). Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach. Journal of Materials Science: Materials in Medicine. 27 (2). https://doi.org/10.1007/s10856-015-5657-2
Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks
Stachewicz, U, Bailey, RJ, Zhang, H, Stone, CA, Willis, CR and Barber, AH (2015). Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks. ACS applied materials & interfaces. 7 (30), pp. 16645-16652. https://doi.org/10.1021/acsami.5b04272
Structural orientation dependent sub-lamellar bone mechanics
Jimenez-Palomar, I, Shipov, A, Shahar, R and Barber, AH (2015). Structural orientation dependent sub-lamellar bone mechanics. Journal of the Mechanical Behavior of Biomedical Materials. 52, pp. 63-71. https://doi.org/10.1016/j.jmbbm.2015.02.031
Extreme strength observed in limpet teeth
Barber, AH, Lu, D and Pugno, NM (2015). Extreme strength observed in limpet teeth. Journal of The Royal Society Interface. 12 (105), pp. 20141326-20141326. https://doi.org/10.1098/rsif.2014.1326
Mechanical Behavior of Osteoporotic Bone at Sub-Lamellar Length Scales
Jimenez-Palomar, I, Shipov, A, Shahar, R and Barber, AH (2015). Mechanical Behavior of Osteoporotic Bone at Sub-Lamellar Length Scales. Frontiers in Materials. 2. https://doi.org/10.3389/fmats.2015.00009
Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy
Wang, C, Frogley, MD, Cinque, G, Liu, L-Q and Barber, AH (2014). Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy. Nanoscale. 6 (23), pp. 14404-14411. https://doi.org/10.1039/C4NR03646H
X-ray computed tomography evaluations of additive manufactured multimaterial composites.
Curto, M., Kao, A P, Keeble, W, Tozzi, G. and Barber, A H (2021). X-ray computed tomography evaluations of additive manufactured multimaterial composites. Journal of Microscopy. https://doi.org/10.1111/jmi.13034
Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic
Goel, S., Hawi, S., Goel, G., Thakur, V.K., Pearce, O., Hoskins, C., Hussain, T., Agrawal, A., Upadhyaya, H., Cross, G. and Barber, A. (2020). Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic. Materials Today Chemistry. https://doi.org/10.1016/j.mtchem.2020.100300
Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model
Peña Fernández, M., Dall’Ara, Enrico, Bodey, Andrew J., Parwani, Rachna, Barber, A., Blunn, Gordon W. and Tozzi, G. (2019). Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model. ACS Biomaterials Science & Engineering. 5 (5), pp. 2543-2554. https://doi.org/10.1021/acsbiomaterials.8b01044
Seismo‐Mechanical Response of Anisotropic Rocks Under Hydraulic Fracture Conditions: New Experimental Insights
Gehne, S., Benson, P., Koor, N., Dobson, K., Enfield, M. and Barber, A. (2019). Seismo‐Mechanical Response of Anisotropic Rocks Under Hydraulic Fracture Conditions: New Experimental Insights. Journal of Geophysical Research: Solid Earth. 124 (9), pp. 9562-9579. https://doi.org/10.1029/2019jb017342
Microscopy and supporting data for osteoblast integration within an electrospun fibrous network
Stachewicz, U, Qiao, T, Rawlinson, SCF, Veiga Almeida, F, Li, W-Q, Cattell, M and Barber, AH (2015). Microscopy and supporting data for osteoblast integration within an electrospun fibrous network. Data in Brief. 5, pp. 775-781. https://doi.org/10.1016/j.dib.2015.10.009
3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration
Stachewicz, U, Qiao, T, Rawlinson, SCF, Almeida, FV, Li, W-Q, Cattell, M and Barber, AH (2015). 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomaterialia. 27, pp. 88-100. https://doi.org/10.1016/j.actbio.2015.09.003
The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes
Almeida, FV, Walko, G, McMillan, JR, McGrath, JA, Wiche, G, Barber, AH and Connelly, JT (2015). The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes. Journal of Cell Science. 128 (24), pp. 4475-4486. https://doi.org/10.1242/jcs.173435
3D nanomechanical evaluations of dermal structures in skin
Kao, AP, Connelly, JT and Barber, AH (2015). 3D nanomechanical evaluations of dermal structures in skin. Journal of the Mechanical Behavior of Biomedical Materials. 57, pp. 14-23. https://doi.org/10.1016/j.jmbbm.2015.11.017
Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone
Hang, F, Gupta, HS and Barber, AH (2013). Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone. Journal of The Royal Society Interface. 11 (92), pp. 20130993-20130993. https://doi.org/10.1098/rsif.2013.0993
Adhesion Anisotropy between Contacting Electrospun Fibers
Stachewicz, U, Hang, F and Barber, AH (2014). Adhesion Anisotropy between Contacting Electrospun Fibers. Langmuir. 30 (23), pp. 6819-6825. https://doi.org/10.1021/la5004337
Polarised infrared microspectroscopy of edge-oriented graphene oxide papers
Frogley, MD, Wang, C, Cinque, G and Barber, AH (2014). Polarised infrared microspectroscopy of edge-oriented graphene oxide papers. Vibrational Spectroscopy. 75, pp. 178-183. https://doi.org/10.1016/j.vibspec.2014.07.005
Hydration dependent mechanical performance of denture adhesive hydrogels
Zhang, F, An, Y, Roohpour, N, Barber, AH and Gautrot, JE (2018). Hydration dependent mechanical performance of denture adhesive hydrogels. Dental Materials. 34 (10), pp. 1440-1448. https://doi.org/10.1016/j.dental.2018.06.015
Approaches to 3D printing teeth from X-ray microtomography.
Cresswell-Boyes, AJ, Barber, AH, Mills, D, Tatla, A and Davis, GR (2018). Approaches to 3D printing teeth from X-ray microtomography. Journal of Microscopy. 272 (3), pp. 207-212. https://doi.org/10.1111/jmi.12725
Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems.
Peña Fernández, M, Barber, AH, Blunn, GW and Tozzi, G (2018). Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems. Journal of Microscopy. 272 (3), pp. 213-272. https://doi.org/10.1111/jmi.12745
Development of sustainable biodegradable lignocellulosic hemp fiber/ polycaprolactone biocomposites for light weight applications
Barber, AH, Dhakal, HN, Ismail, S, Zhang, Z, Welsh, E, Maigret, J-E and Beaugrand, J (2018). Development of sustainable biodegradable lignocellulosic hemp fiber/ polycaprolactone biocomposites for light weight applications. Composites Part A: Applied Science and Manufacturing. 113, pp. 350-358. https://doi.org/10.1016/j.compositesa.2018.08.005
Preservation of bone tissue integrity with temperature control for in situ SR-MicroCT experiments
Fernández, MP, Dall'Ara, E, Kao, AP, Bodey, AJ, Karali, A, Blunn, GW, Barber, AH and Tozzi, G (2018). Preservation of bone tissue integrity with temperature control for in situ SR-MicroCT experiments. Materials. 11 (11). https://doi.org/10.3390/ma11112155
Micro-mechanical properties of the tendon-to-bone attachment
Deymier, AC, An, Y, Boyle, JJ, Schwartz, AG, Birman, V, Genin, GM, Thomopoulos, S and Barber, AH (2017). Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomaterialia. 56, pp. 25-35. https://doi.org/10.1016/j.actbio.2017.01.037
Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities
Stachewicz, U, Dijksman, JF, Soudani, C, Tunnicliffe, LB, Busfield, JJC and Barber, AH (2017). Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities. European Polymer Journal. 91, pp. 368-375. https://doi.org/10.1016/j.eurpolymj.2017.04.017
Extreme Toughness Exhibited in Electrospun Polystyrene Fibers
Zhang, F and Barber, AH (2017). Extreme Toughness Exhibited in Electrospun Polystyrene Fibers. Macromolecular Materials and Engineering. 302 (9), pp. 1700084-1700084. https://doi.org/10.1002/mame.201700084
X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles
Zhang, G, Parwani, R, Stone, CA, Barber, AH and Botto, L (2017). X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles. Langmuir. 33 (43), pp. 12072-12079. https://doi.org/10.1021/acs.langmuir.7b02982
Stress concentrations in nanoscale defective graphene
Wang, C, Wang, J and Barber, AH (2017). Stress concentrations in nanoscale defective graphene. AIP Advances. 7 (11), pp. 115001-115001. https://doi.org/10.1063/1.4996387
Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility
Theocharidis, G, Drymoussi, Z, Kao, AP, Barber, AH, Lee, DA, Braun, KM and Connelly, JT (2016). Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility. Journal of Investigative Dermatology. 136 (1), pp. 74-83. https://doi.org/10.1038/JID.2015.352
Morphological and Mechanical Biomimetic Bone Structures
Parwani, R, Curto, M, Kao, AP, Rowley, PJ, Pani, M, Tozzi, G and Barber, AH (2016). Morphological and Mechanical Biomimetic Bone Structures. ACS Biomaterials Science & Engineering. 3 (11), pp. 2761-2767. https://doi.org/10.1021/acsbiomaterials.6b00652
Modal analysis of novel coronavirus (SARS COV-2) using finite element methodology
Warsame, C., Valerini, D., Llavori, I., Barber, A. and Goel, S. (2022). Modal analysis of novel coronavirus (SARS COV-2) using finite element methodology. Journal of the Mechanical Behavior of Biomedical Materials. 135, p. 105406. https://doi.org/10.1016/j.jmbbm.2022.105406
Biomimetic generation of the strongest known biomaterial found in limpet tooth.
Rumney, R., Robson, S., Kao, A., Barbu, E., Bozycki, L., Smith, J., Cragg, S., Couceiro, F., Parwani, R., Tozzi, G., Stuer, M., Barber, Asa H, Ford, A. and Górecki, D. (2022). Biomimetic generation of the strongest known biomaterial found in limpet tooth. Nature Communications. 13 (1), p. 3753. https://doi.org/10.1038/s41467-022-31139-0
Composite 3D printing of biomimetic human teeth
Barber, A. H., Cresswell-Boyes, A. J., Davies, G. R., Krishnamoorthy, M. and Mills, D. (2022). Composite 3D printing of biomimetic human teeth. Scientific Reports. 12 (7830), pp. 1-11. https://doi.org/10.1038/s41598-022-11658-y