Academic staff

Dr Oswaldo Cadenas
cadenaso@lsbu.ac.uk
Electrical and Electronic Engineering
https://orcid.org/0000-0003-4152-6458
636
total views of outputs1736
total downloads of outputs0
views of outputs this month1
downloads of outputs this month
I am a lecturer in the division of Electrical and Electronic Engineering. I joined LSBU in 2017; previously I was briefly with University of Kent and mostly with University of Reading where I received my PhD in Computer Science. I currently teach digital circuit design.
I specialise in digital system techniques to build faster hardware parallel architectures. I develop parallel hardware algorithms. I research techniques to perform faster computations for data science applications.
Courses taught
Electrical and Electronic Engineering - BEng (Hons)
Electrical and Electronic Engineering (Apprenticeship) - BEng (Hons)
Postgraduate Research Supervision
Current
Mrs Banafsheh Khalesi | Microwave Imaging for Diagnostic Application | PhD |
Awarded in the last 5 years
Mrs Behnaz Sohani | Detection of brain stroke in simulation and realistic 3-D human head phantom using microwave imaging | PhD |
University of Reading
University of Reading
Universidad de Los Andes, Venezuela
Teaching
Lecturer, research, and admin
Preprocessing 2D data for fast convex hull computations
Cadenas, O and Megson, GM (2019). Preprocessing 2D data for fast convex hull computations. PLoS ONE. 14 (2), p. e0212189. https://doi.org/10.1371/journal.pone.0212189
Running Median Algorithm and Implementation for Integer Streaming Applications
Cadenas, O and Megson, GM (2018). Running Median Algorithm and Implementation for Integer Streaming Applications. IEEE Embedded Systems Letters. 11 (2), pp. 58-61. https://doi.org/10.1109/LES.2018.2868409
KurSL: Model of anharmonic coupled oscillations based on Kuramoto coupling and Sturm-Liouville problem
Cadenas, O, Laszuk, D and Slawomir, N (2018). KurSL: Model of anharmonic coupled oscillations based on Kuramoto coupling and Sturm-Liouville problem. Advances in Data Science and Adaptive Analysis. 10 (02). https://doi.org/10.1142/S2424922X18400028
On the Phase Coupling of Two Components Mixing in Empirical Mode Decomposition
Laszuk, D, Cadenas, O. and Nasuto, Slawomir J. (2016). On the Phase Coupling of Two Components Mixing in Empirical Mode Decomposition. Advances in Data Science and Adaptive Analysis. 8 (1). https://doi.org/10.1142/S2424922X16500042
EMD performance comparison: single vs double floating points
Laszuk, D, Cadenas, O. and Nasuto, J (2016). EMD performance comparison: single vs double floating points. International journal of signal processing systems. 4 (4), pp. 349-353. https://doi.org/10.18178/ijsps.4.4.349-353
Preconditioning 2D integer data for fast convex hull computations
Cadenas, O, Megson, G.M. and Luengo Hendriks, C.L. (2016). Preconditioning 2D integer data for fast convex hull computations. PLoS ONE. 11 (3). https://doi.org/10.1371/journal.pone.0149860
Pipelined median architecture
Cadenas, O (2015). Pipelined median architecture. Electronics Letters. 51 (24), pp. 1999-2001. https://doi.org/10.1049/el.2015.1898
Median architecture by accumulative parallel counters
Cadenas, O, Megson, G and Sherratt, S (2015). Median architecture by accumulative parallel counters. IEEE Transactions on Circuits and Systems II: Express Briefs. 62 (7), pp. 661-665. https://doi.org/10.1109/TCSII.2015.2415655
Virtualization for cost-effective teaching of assembly language
Cadenas, O, Sherratt, S, Howlett, D, Guy, C and Lundqvist, K (2015). Virtualization for cost-effective teaching of assembly language. IEEE Transactions on Education. 58 (4), pp. 282-288. https://doi.org/10.1109/TE.2015.2405895
Rapid preconditioning of data for accelerating convex hull algorithms
Cadenas, O and Megson, G (2014). Rapid preconditioning of data for accelerating convex hull algorithms. Electronics Letters. 50 (4), pp. 270-272. https://doi.org/10.1049/el.2013.3507