Academic staff

HomeAcademic staffDr Nirmal Kumar
  • 6232
    total views of outputs
  • 8079
    total downloads of outputs
  • 68
    views of outputs this month
  • 41
    downloads of outputs this month

I joined LSBU in 2020, where I am Newton International Post-Doctoral Fellow in the School of Engineering. I originally studied Master in Nanotechnology, completing at AMU Aligarh India, followed by a PhD in Materials Science and Engineering from the Indian Institute of Technology Kanpur, Kanpur, India. My main research interests are nanomaterials preparation and their characterisations, Thermal spray coating and molecular dynamics.

I have worked in the multi-disciplinary research area before joining LSBU, worked as a Kreitman Foundation post-doctoral fellow at Ben Gurion University of Negev, Israel, for one year and worked on measuring nanomechanical properties of virus capsid using advanced AFM nanoindentation technique in physiological condition (in-situ). During doctoral studies, prepared high entropy alloys nanoparticles, which are almost impossible to synthesise by wet chemical synthesis due to different reaction rates of different metals and due formation of intermetallic, cause losing the high entropy single phase properties. I have discovered a novel process to prepare the HEA alloys nanoparticle synthesis process by cryomilling and preparing three types of HEA nanoparticles (FeCrMnNiCo, FeCrMnVAl, and AgAuCuPdPt) successfully. The AgAuCuPdPt shows promising catalytic activity for CO2 reduction to hydrocarbon fuel. Based on this result, one published in ACS-Catalyst and another published in Materials Today Energy. One review article on cryomilling as a green process for nanomaterials preparation and its prospects published in International Materials Review. I have published around 20 research articles, one book chapter on nanomaterials utilisation in bio-sensors, and one Indian patent.

I have hands-on experience (Transmission electron Microscopy) for different samples (solid bulk sample, powder sample, etc.) on a double tilt GATAN holder. I am an expertise bright field, dark field, diffraction pattern in different zone axis, HAADF imaging, and image processing software (GATAN Digital microscopy suit). I have expertise in various characterisation instrument like XRD, SEM, UV-Visible, Raman spectroscopy, nanoindentation.

Ph.D.

Indian Institute of Technology Kanpur India

2012
2018
M.Tech (Nanotechnology)

Aligarh Muslim University Aligarh India

2009
2011
M.Sc. (Industrial Chemistry)

Aligarh Muslim University Aligarh India

2007
2009
Bachelor of Science

Kanpur University

2003
2007
Post Doctoral

Ben Gurion University of The Negev, Beer Sheva Israel

2018
2019
Post Doctoral
Ben Gurion University of the Negev, Beer Sheva, Israel

Independent research

2018
2019
Education
FunderYear wonProjectRole
Engineering and Physical Sciences Research Council (EPSRC)2022Thermal spraying borosilicate glass coating on soda lime glass substrate as a step towards Net Zero Glass ManufacturingPrincipal Investigator
Electron Microscope Society of India (EMSI)
2016
2050

Filter publications

Forest hardening and Hirth lock during grinding of copper evidenced by MD simulations
Pratap, A., Kumar, N., Fan, P., Goel, S. and Joshi, S. (2024). Forest hardening and Hirth lock during grinding of copper evidenced by MD simulations. Manufacturing Letters. 40, pp. 58-64. https://doi.org/10.1016/j.mfglet.2024.03.002

Stress concentration targeted reinforcement using multi-material based 3D printing
Singh, H., Santos, A.B., Das, D., Ambekar, R.S., Saxena, P., Woellner, C.F., Kumar, N. and Sekhar Tiwary, C. (2024). Stress concentration targeted reinforcement using multi-material based 3D printing. Applied Materials Today. 36, p. 102010. https://doi.org/10.1016/j.apmt.2023.102010

Unleashing Enhanced Compressive Strength: 3D Printed Octopus-Inspired Suction Cups Using Topological Engineering
Dixit, A., Das, M., Singh, H., Kumar Panda, S., Pugno, N.M., Kumar, N. and Sekhar Tiwary, C. (2023). Unleashing Enhanced Compressive Strength: 3D Printed Octopus-Inspired Suction Cups Using Topological Engineering. ACS Applied Polymer Materials. https://doi.org/10.1021/acsapm.3c01721

Anisotropic plasticity mechanisms in a newly synthesised High Entropy Alloy investigated using atomic simulations and nanoindentation experiments
Fan, P., Kumar, N., Arshad, M., Bai, M., Mao, H. and Goel, S. (2023). Anisotropic plasticity mechanisms in a newly synthesised High Entropy Alloy investigated using atomic simulations and nanoindentation experiments. Journal of Alloys and Compounds. 970, p. 172541. https://doi.org/10.1016/j.jallcom.2023.172541

Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application
Madan< C., Jha, S.R., Kumar, N., Singh, A., Mitra, R., Tiwary, C.S., Biswas, K. and Halder, A. (2023). Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application. Energy Advances. https://doi.org/10.1039/d3ya00356f

Resistance Driven H2 Gas Sensor: High Entropy Alloy Nanoparticles Decorated 2D MoS2
Mondal, B., Zhang, X., Kumar, S., Long, F., Katiyar, N., Kumar, N., Goel, S. and Biswas, K. (2023). Resistance Driven H2 Gas Sensor: High Entropy Alloy Nanoparticles Decorated 2D MoS2. Nanoscale. https://doi.org/10.1039/D3NR04810A

Effects of Size on Water Vapour Absorption and Regeneration in Lithium chloride nanocrystals
Prakash, A., Katiyar, N.Ku., Suarez-Villagran, M., Miller, J., Machado Jr., L., Tiwary, C.S., Biswas, K. and Chattopadhyay, K. (2023). Effects of Size on Water Vapour Absorption and Regeneration in Lithium chloride nanocrystals. Materials Today Communications. https://doi.org/10.1016/j.mtcomm.2023.106388

A Guiding Framework for Process Parameter Optimisation of Thermal Spraying
Venkatachalapathy, V., Kumar, N., Matthews, A., Endrino, J. and Goel, S. (2023). A Guiding Framework for Process Parameter Optimisation of Thermal Spraying. Coatings. 13 (4), p. 713. https://doi.org/10.3390/coatings13040713

Phase prediction and experimental realisation of a new high entropy alloy using machine learning
Singh, S., Kumar, N., Goel, S. and Joshi, S.N. (2023). Phase prediction and experimental realisation of a new high entropy alloy using machine learning. Scientific Reports. 13, p. 4811. https://doi.org/10.1038/s41598-023-31461-7

Recent Progress and Perspective on Batteries made from Nuclear Waste
Kumar, N. and Goel, S. (2023). Recent Progress and Perspective on Batteries made from Nuclear Waste. Nuclear Science and Techniques. https://doi.org/10.1007/s41365-023-01189-0

Nanoparticle mediated cancer cell therapy: Basic science to clinical applications
Verma, J., Warsame, C., Seenivasagam, R.K., Kumar, N., Abdel Aleem, E. and Goel, S. (2023). Nanoparticle mediated cancer cell therapy: Basic science to clinical applications. Cancer and Metastasis Reviews. https://doi.org/10.1007/s10555-023-10086-2

Oblique nanomachining of Gallium Arsenide explained using AFM experiments and MD simulations
Fan, P., Kumar, N., Goel, S., He, Y., Geng, Y., Yan, Y., Mao, H. and Luo, X. (2023). Oblique nanomachining of Gallium Arsenide explained using AFM experiments and MD simulations. Journal of Manufacturing Processes. 90, pp. 125-138. https://doi.org/10.1016/j.jmapro.2023.01.002

Nanomaterials based Biosensing: Methods and principle of detection
Kumar, N., Goel, G. and Goel, S. (2022). Nanomaterials based Biosensing: Methods and principle of detection. in: Joshi SN and Chandra P (ed.) Advanced Micro and Nano Manufacturing Technologies - Applications in Biochemical and Biomedical Engineering Springer Nature.

Two‐dimensional Multi‐Component Quasicrystal as Bi‐functional Electrocatalysts for Alkaline Oxygen and Hydrogen Evolution Reactions
Mishra, S.S., Kumbhakar, P., Nellaiappan, S., Kumar, N., Tromer, R., Wollner, C.F., Galvao, D.S., Tiwary, C.S., Ghosh, C., Dasgupta, A. and Biswas, K. (2022). Two‐dimensional Multi‐Component Quasicrystal as Bi‐functional Electrocatalysts for Alkaline Oxygen and Hydrogen Evolution Reactions. Energy Technology. 11 (2), p. 2200860. https://doi.org/10.1002/ente.202200860

Uniaxial pulling and nano-scratching of a newly synthesized high entropy alloy
Fan, P., Kumar, N., Zhou, X. and Goel, S. (2022). Uniaxial pulling and nano-scratching of a newly synthesized high entropy alloy. APL Materials. 10 (11), p. 111118. https://doi.org/10.1063/5.0128135

Uniaxial pulling and nano-scratching of a newly synthesised high entropy alloy
Fan, P., Kumar, N., Zhou, X. and Goel, S. (2022). Uniaxial pulling and nano-scratching of a newly synthesised high entropy alloy. APL Materials. https://doi.org/10.1063/5.0128135

Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunities
Faisal, N.H., Prathuru, A., Ahmed, R., Rajendran, V., Hossain, M., Venkatachalapathy, V., Kumar, N., Li, J., Liu, Y., Cai, Q., Horri, B.A., Thanganadar, D., Singh Sodhi, G., Patchigolla, P., Fernandez, C., Joshi, S., Govindarajan, S., Kurushina, V., Katikaneni, S. and Goel, S. (2022). Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunities. ChemNanoMat. p. e202200384. https://doi.org/10.1002/cnma.202200384

Thermal spray coatings for electromagnetic wave absorption and interference shielding: a review and future challenges
Faisal, N.H., Ahmed, R., Sellami, N., Prathuru, A., Njuguna, J., Venturi, F., Hussain, T., Nezhad, H.Y., Kumar, N., Goel, S., Upadhyaya, H., Joshi, S., Muhammad-Sukki, F., Prabhu, R., Mallick, T., Whittow, W. and Kamnis, S. (2022). Thermal spray coatings for electromagnetic wave absorption and interference shielding: a review and future challenges. Advanced Engineering Materials. https://doi.org/10.1002/adem.202200171

Industry 4.0 and Digitalisation in Healthcare.
Popov, V., Kudryavtseva, E., Kumar, N., Shishkin, A., Stepanov, S. and Goel, S. (2022). Industry 4.0 and Digitalisation in Healthcare. Materials. 15 (6). https://doi.org/10.3390/ma15062140

Electrooxidation of Hydrazine Utilizing High-Entropy Alloys: Assisting the Oxygen Evolution Reaction at the Thermodynamic Voltage
Kumar, N., Dhakar, Shikha, Parui, Arko, Gakhad, Pooja, Singh, A., Biswas, K., Tiwary, C. and Sharma, S. (2021). Electrooxidation of Hydrazine Utilizing High-Entropy Alloys: Assisting the Oxygen Evolution Reaction at the Thermodynamic Voltage. ACS Catalysis. 11 (22), pp. 14000-14007. https://doi.org/10.1021/acscatal.1c03571

Role of Thermal Spray in Combating Climate Change
Viswanathan, V., Kumar, N., Goel, G., Matthews, A. and Goel, S. (2021). Role of Thermal Spray in Combating Climate Change. Emergent Materials. https://doi.org/10.1007/s42247-021-00307-1

Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)
Sharma, L., Kumar, N., Parui, A., Das, R., Kumar, R., Tiwary, C.S., Singh, A.K., Halder, A. and Biswas, K. (2021). Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Research. https://doi.org/10.1007/s12274-021-3802-4

Nature inspired materials: Emerging trends and prospects
Kumar, N., Goel, G., Hawi, S. and Goel, S. (2021). Nature inspired materials: Emerging trends and prospects . NPG Asia Materials. 15 (56). https://doi.org/10.1038/s41427-021-00322-y

Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications
Kumar, N., Goel, G. and Goel, S. (2021). Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications. Emergent Materials. https://doi.org/10.1007/s42247-021-00249-8

Large scale manufacturing route to metamaterial coatings using thermal spray techniques and their response to solar radiation
Faisal, N.H., Sellami, N., Venturi, F., Hussain, T., Mallick, T., Muhammad-Sukki, F., Bishop, A., Upadhyaya, H., Kumar, N. and Goel, S. (2021). Large scale manufacturing route to metamaterial coatings using thermal spray techniques and their response to solar radiation. Emergent Materials. https://doi.org/10.1007/s42247-021-00252-z

A Perspective on the Catalysis Using the High Entropy Alloys
Kumar, N., Biswas, K., Yeah, J-W., Sharma, S. and Tiwary, C.S. (2021). A Perspective on the Catalysis Using the High Entropy Alloys. Nano Energy. https://doi.org/10.1016/j.nanoen.2021.106261

Potential pathway for recycling of the paper mill sludge compost for brick making
Goel, G., Vasić, M.V., Kumar, N., Subramanian Kala, K., Pezo, M. and Dinakar, P. (2021). Potential pathway for recycling of the paper mill sludge compost for brick making. Construction and Building Materials. 278. https://doi.org/10.1016/j.conbuildmat.2021.122384

Nanofabrication route to achieve sustainable production of next generation defect-free graphene: analysis and characterisation
Misra, S., Katiyar, N.K., Kumar, A., Goel, S. and Biswas, K. (2021). Nanofabrication route to achieve sustainable production of next generation defect-free graphene: analysis and characterisation. Nanofabrication. 6 (1), pp. 36-43. https://doi.org/10.1515/nanofab-2020-0101

Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling
Katiyar, N.K. and Biswas, K. (2021). Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling. Materials Today Communications. 26, p. 102020. https://doi.org/10.1016/j.mtcomm.2021.102020

Cryomilling as environmentally friendly synthesis route to prepare nanomaterials
Kumar, N., Biswas, Krishanu and Tiwary, C. S. (2020). Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. International Materials Reviews. 66 (7), pp. 493-532. https://doi.org/10.1080/09506608.2020.1825175

Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing
Urs, K.M.B., Katiyar, N.K., Kumar, R., Biswas, K., Singh, A.K., Tiwary, C.S. and Kamble, V. (2020). Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale. 12 (22), pp. 11830-11841. https://doi.org/10.1039/d0nr02177f

Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst
Kumar, N., Nellaiappan, S., Kumar, R., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K. (2020). Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst. Materials Today Energy. 16, p. 100393. https://doi.org//10.1016/j.mtener.2020.100393

High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization
Nellaiappan, S., Katiyar, N.K., Kumar, R., Parui, A., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K. (2020). High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization. ACS Catalysis. 10 (6), pp. 3658-3663. https://doi.org/10.1021/acscatal.9b04302

Ultra-Low Temperature CO Oxidation Activity of Octahedral Site Cobalt Species in Co3O4 Based Catalysts: Unravelling the Origin of Unique Catalytic Property
Baidya, T., Murayama, T., Nellaiappan, S., Kumar, N., Bera, P., Safonova, O., Lin, M., Priolkar, K.R., Kundo, S., Rao, B.S., Steiger, P., Sharma, S., Biswas, K., Pradhan, S.K., Lingaiah, N., Malviya, K.D. and Hatura, M. (2019). Ultra-Low Temperature CO Oxidation Activity of Octahedral Site Cobalt Species in Co3O4 Based Catalysts: Unravelling the Origin of Unique Catalytic Property. The Journal of Physical Chemistry C. https://doi.org/10.1021/acs.jpcc.9b04136

The Effect of Configurational Entropy of Mixing on the Design and Development of Novel Materials
Biswas, K. and Kumar, N. (2019). The Effect of Configurational Entropy of Mixing on the Design and Development of Novel Materials. Proceedings of the Indian National Science Academy. 86 (3), pp. 1127-1134. https://doi.org/10.16943/ptinsa/2019/49674

Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles
Kumar, N., Biswas, K., Tiwary, C.S., Machado, L.D. and Gupta, R.K. (2019). Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles. Langmuir. 35 (7), pp. 2668-2673. https://doi.org/10.1021/acs.langmuir.8b03401

Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy
Kumar, J., Kumar, N., Das, S., Gurao, N. and Biswas, K. (2018). Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy. Transactions of the Indian Institute of Metals. 71 (11), pp. 2749-2758. https://doi.org/10.1007/s12666-018-1443-4

Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots
Kumar, N., Tiwary, C. and Biswas, K. (2018). Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. Journal of Materials Science. 53 (19), pp. 13411-13423. https://doi.org/10.1007/s10853-018-2485-z

Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles
Kumar, N. and Biswas, K. (2019). Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles. Journal of Materials Research and Technology. 8 (1), pp. 63-74. https://doi.org/10.1016/j.jmrt.2017.05.017

Low-Temperature CO Oxidation over Combustion Made Fe- and Cr-Doped Co3O4 Catalysts: Role of Dopant’s Nature toward Achieving Superior Catalytic Activity and Stability
Baidya, T., Murayama, P., Bera, P., Safonova, O.V., Steiger, P., Kumar, N., Biswas, K. and Haruta, M. (2017). Low-Temperature CO Oxidation over Combustion Made Fe- and Cr-Doped Co3O4 Catalysts: Role of Dopant’s Nature toward Achieving Superior Catalytic Activity and Stability. The Journal of Physical Chemistry C. 121 (28), p. 15256–15265. https://doi.org/10.1021/acs.jpcc.7b04348

Green synthesis of Ag nanoparticles in large quantity by cryomilling
Kumar, N., Biswas, K. and Gupta, R. K. (2016). Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Advances. 6 (112), pp. 111380-111388. https://doi.org/10.1039/c6ra23120a